Packaging Redesign

Life Cycle Assessment Retro

by Nia Starr

Intro

Contents

01

Intro

- The Company
- Redesign Overview

02

Measurement

- The Goal
- The Scope
- Inventory Analysis

03

Assessment

- Impact Improvement
- SBOM Input Impact
- Life Cycle Stage Impact
- Recommendations
- Social Impact

Original: Plastic Mylar Bag

Product: Compact

- Two Pieces
- Branded

Paper Box: Holographic Paper

Product: Compact

- One Piece
- Branded
- Less Expensive per piece

Measurement

The Scope

Functional Unit

- The functions of the packaging is to protect the product within for a given amount of time: the transit time from the manufacturer to the consumer.
- FU = 1 week of encasing a Kitpak product for delivery

System Boundary

- The production of packaging from the raw materials up to the EOL of the finished packaging
- This assessment includes the weight of the product inside the packaging during transport, but not the environmental system of the internal product itself.

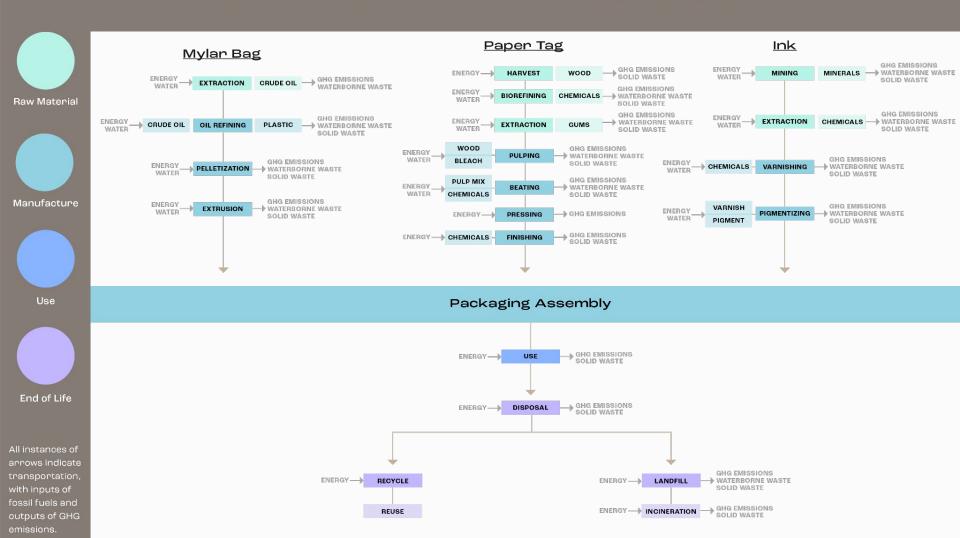
Assumptions

- I am assuming the raw materials are processed in Dongguan China, the typical factory town that feeds into Shenzhen factories.
- Data was collected by Sustainable Minds' collection
- Total kilometers accounts for final delivery to NYC

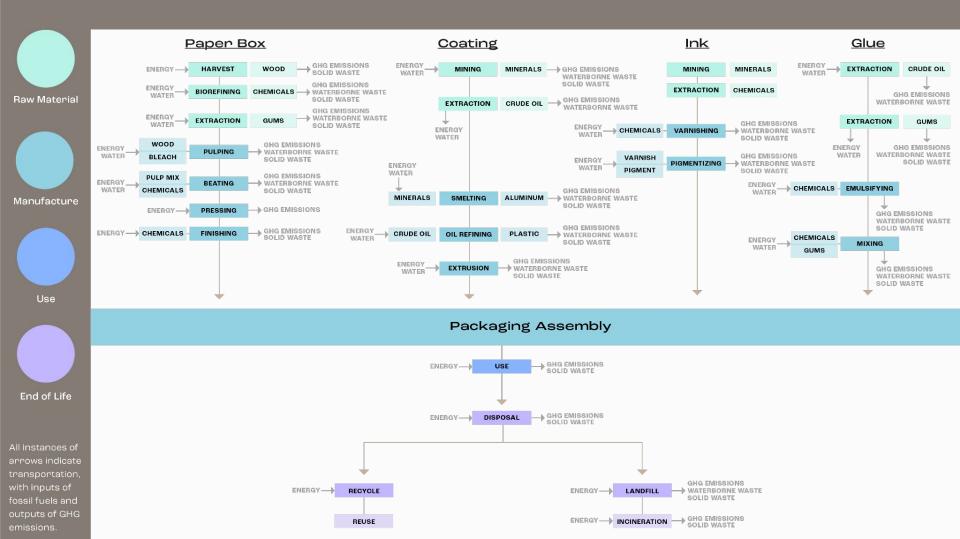
Inventory Analysis

Mylar Bag

Outer packaging aside, the plastic bag has the most mass.


Component	Plastic Bag	Paper Tag	Ink	Corrugated Cardboard Mailer Box	Shipping Label	Weight of Compact			
Amount/Unit	7.69 grams	0.84 grams	0.1 grams	97.32 grams	1.27 grams	88.5 grams			
Core Material	PET	Paper	Pigment	Paper	Paper				
Raw Material	Crude Oil	Wood	Minerals	Wood	Wood				
Material Processing	Oil Refining, Polymerization, Pellet Production	Wood Pulping	Varnishing, Pigment Dispersal	Pulped	Pulped, Bleached, Mixed with Rosins	1			
Manufacturing	Film Extrusion, Lamination	Print	Print	Corrugation, Dieline cut	Print				
Use	N/A	N/A	N/A		N/A				
Distribution	8,103.21 km Shenzhen, China> Anchorage, Alaska USA by Air I	Freight							
	7018.349184 km Alaska to NYC by Truck								
	8.04672 km NYC distribution center to Brooklyn by Truck				158.3594 km Allentown, Pennsylvania> NYC				
Total	15287.96 km								
End of Life (EOL)	Incinerated								

Holographic Paper Box


Outer packaging aside, the paper box has the most mass.

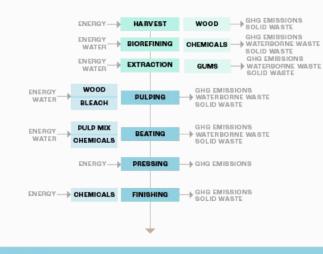
Component	Paper Box	Aluminum Coating	Plastic Coating	Glue	Ink	Corrugated Cardboard Mailer Box	Shipping Label
Amount/Unit	7.47 grams	1.28 grams	3.98 grams	0.16 grams	0.1 grams	97.32 grams	1.27 grams
Core Material	Paper	Aluminum	Polyethylene	Polyvinyl Acetate	Pigment	Paper	Paper
Raw Material	Wood	Minerals (Bauxites)	Crude Oil	Crude Oil	Minerals	Wood	Wood
Material Processing	Pulped	Refining, Smelting	Oil refining, polymerization	Emulsifying, Mixing	Varnishing, Pigment Dispersal	Pulped	Pulped, Bleached, Mixed with Rosins
Manufacturing	Dieline cut	Metallized (Vaporized), Embossed	Extrusion	Application	Print	Corrugation, Dieline cut	Print
Use	N/A	N/A	N/A	N/A	N/A		N/A
Distribution	8103.21 km Shenzhen, China> Anchorage, Alaska USA by Air Freight					158.3594 km Allentown, Pennsylvania> NYC	
	7018.349184 km Alaska to NYC by Truck						
	8.04672 km NYC distribution	on center to Brooklyn by Truck					
Total	15287.96 km						
End of Life (EOL)	Incinerated						

MYLAR BAG PACKAGING

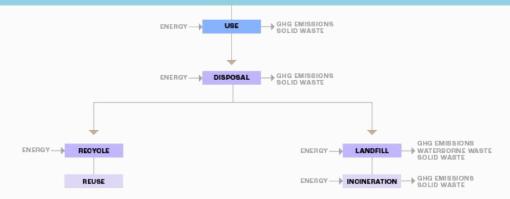
HOLOGRAPHIC PAPER PACKAGING

OUTER PACKAGING

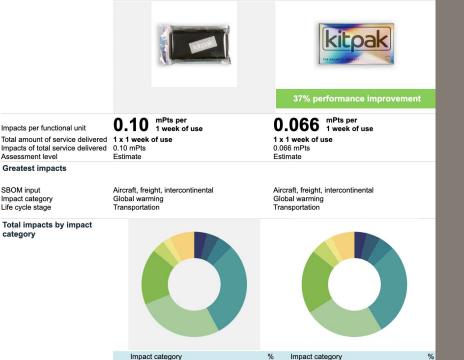
All instances of arrows indicate transportation, with inputs of fossil fuels and outputs of GHG emissions.


FINISHING

ENERGY --- CHEMICALS


GHG EMISSIONS

SOLID WASTE


Shipping Label

Packaging Assembly

Assessment

Ecological damage

Acidification

Ecotoxicity

Eutrophication

Global warming

Ozone depletion

Resource depletion

Fossil fuel depletion

Carcinogenics

Smog

Non carcinogenics

Respiratory effects

Human health damage

3.98

3.8

4.73

29.75

0.05

26.45

17.29

3.98

2.28

7.69

3.86

4.27

4.8

28.49

0.04

24.51

19.75

4.67

2.42

7.19

New Holographic Paper Box Packaging

Reference

Impacts per functional unit

Assessment level

Impact category

Life cycle stage

category

Greatest impacts SBOM input

Impacts of total service delivered

Total impacts by impact

Original Mylar Bag Packaging

Ecological damage

Acidification

Ecotoxicity

Eutrophication

Global warming

Ozone depletion Resource depletion

Fossil fuel depletion

Carcinogenics

Non carcinogenics

Respiratory effects

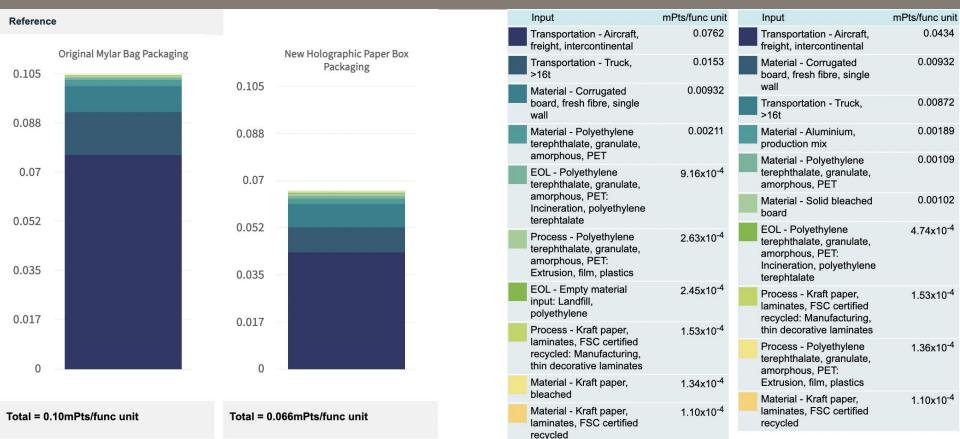
Smog

Human health damage

How'd we do?

According to Sustainable Minds' calculation, there is a 37% impact performance improvement with the new paper box design.

What are the greatest environmental impacts?


For both package types the following impact categories carry the most weight:

- Ecological Damage
 - **Global Warming**
- Resource Depletion
 - Fossil Fuel Depletion
- Human Health Damage
 - Carcinogenics

Impacts by System Bill of Materials (SBOM)

For both packages, the inputs causing the most impact is transportation, followed by the outer corrugated cardboard box. The new packaging design has proportionally less.

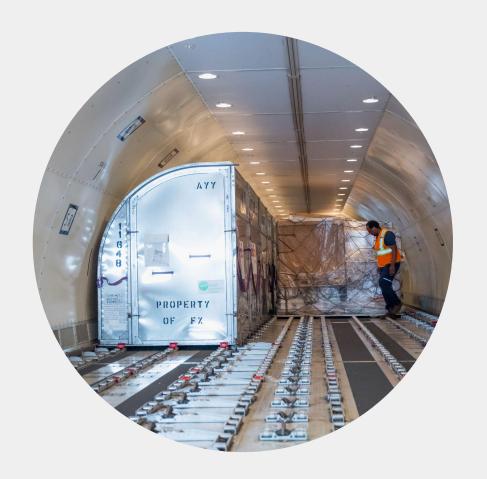
The actual branded product packaging has the least impact proportionally for each respective concept.

Impacts by Life Cycle Stage

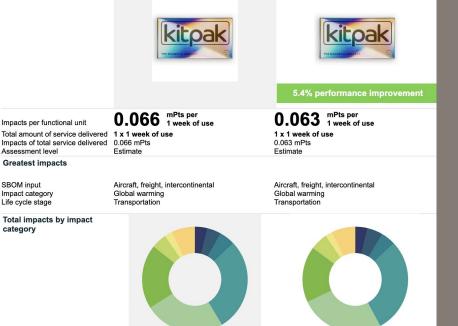
Transportation for both the original and new paper-based design has the greatest impact in both of the packaging's life cycle, with the mylar

bag having greater impact in that category.

Raw materials processing and manufacturing is almost the same for both packaging types.


Recommendations

Impact Improvement by Component


What if we used only recycled materials as the inputs for our manufacturing processes?

Impact Improvement by Life Cycle Stage

What if we ordered our boxes from a domestic factory rather than from China?

Improving Impact by Material Components

Impact category

Acidification

Ecotoxicity

Eutrophication

Global warming

Ozone depletion

Resource depletion

Human health damage

Fossil fuel depletion

Carcinogenics

Smog

Non carcinogenics

Respiratory effects

3.86

4.27

4.8

28.49

0.04

24.51

19.75

4.67

2.42

7.19

Ecological damage

3.77

4.77

4.47

29.13

0.05

25.82

17.17

5.33

2.1

7.39

Recycled Holographic Paper Box Packaging

Reference

Estimate

Impact category

Acidification

Ecotoxicity

Eutrophication

Global warming

Ozone depletion Resource depletion

Fossil fuel depletion Human health damage

Carcinogenics

Non carcinogenics

Respiratory effects

Smog

Ecological damage

Impacts per functional unit

Total impacts by impact

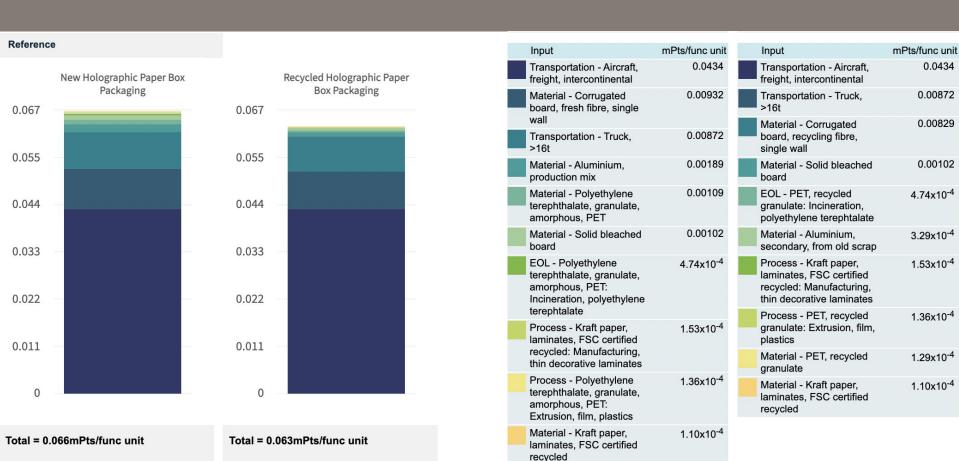
Assessment level **Greatest impacts** SBOM input

Impact category

Life cycle stage

category

Impacts of total service delivered


New Holographic Paper Box Packaging

How'd we do?

According to Sustainable Minds' calculation, there is only a 5.4% impact performance improvement with recycled inputs in the manufacturing process.

Impacts by System Bill of Materials (SBOM)

There is only a 0.003 mPT reduction from the Sustainable Minds scorecard for SBOM Impact.

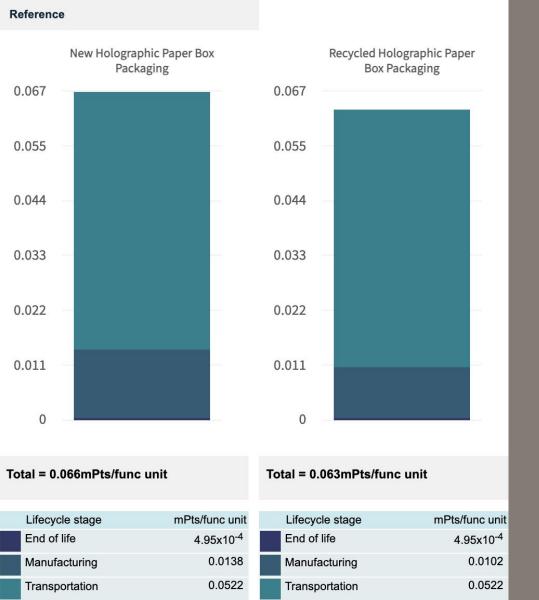
0.0434

0.00872

0.00829

0.00102

4.74x10⁻⁴


3.29x10⁻⁴

1.53x10⁻⁴

1.36x10⁻⁴

1.29x10⁻⁴

1.10x10⁻⁴

Impacts by Life Cycle Stage

There is only a 0.003 mPT reduction from the Sustainable Minds scorecard for SBOM Impact.

It's a reduction, but I would synthesize this as not as significant a route to pursue when identifying where to reduce carbon intensive processes.

Improving Impact by Transportation

Domestic - Holographic Paper Box Packaging

78% performance improvement

Impacts per functional unit Total amount of service delivered 1 x 1 week of use Impacts of total service delivered Assessment level

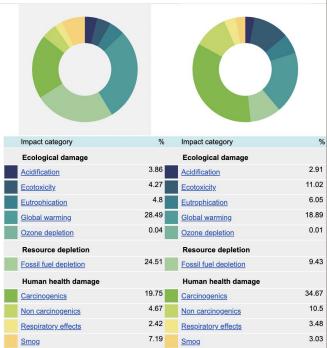
0.066 mPts Estimate

Reference

0.015 mPts per 1 week of use 1 x 1 week of use

0.015 mPts Estimate

Greatest impacts


SBOM input Impact category Life cycle stage

Aircraft, freight, intercontinental Global warming Transportation

0.066 mPts per 1 week of use

Corrugated board, fresh fibre, single wall Carcinogenics Manufacturing

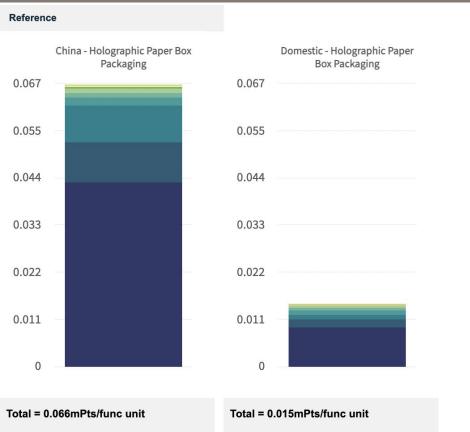
Total impacts by impact category

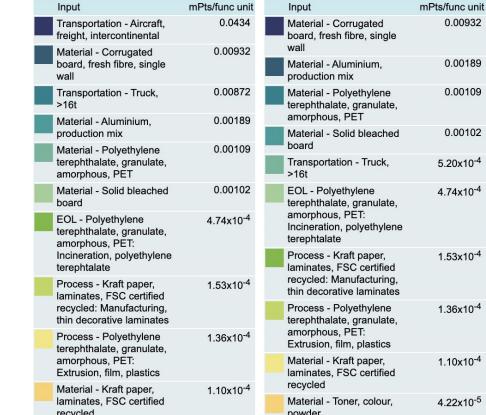
How'd we do?

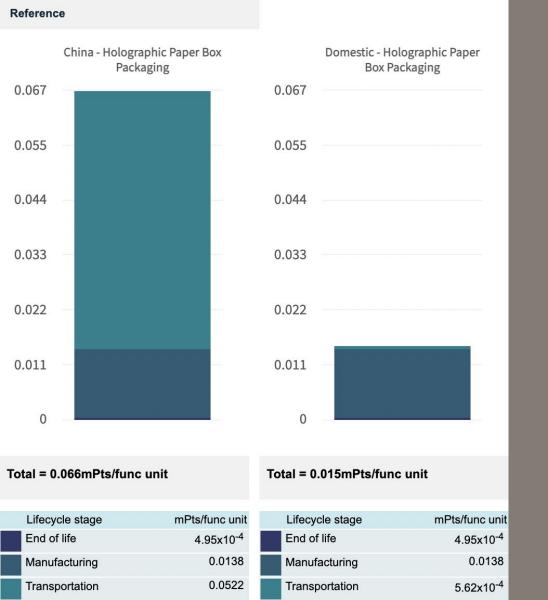
According to Sustainable Minds' calculation, there is a **78**% impact performance improvement with the adjusted transportation distance and mode.

Cutting out air freight and 14,861 kilometers.

Distribution	418.429 km Virginia to NYC			
	8.04672 km NYC distribution center to Brooklyn by Truck			


What are the greatest environmental impacts?


For the domestic packaging, transportation and fossil fuel no longer becomes the standout impact, but the human health damage impact.


Impacts by System Bill of Materials (SBOM)

Transportation no longer is the impact issue with the packaging if we switch to a domestic producer.

Corrugated cardboard for the outer packaging would be our next hurdle to jump over.

Impacts by Life Cycle Stage

Life Cycle Stage

There is a vast improvement in the impact

assessment when working with a domestic producer vs. from overseas.

Once impact from air freight is cut out, the

Once impact from air freight is cut out, the manufacturing process becomes the next step for accounting what process to reduce impact in.

Social Impacts

Dongguan, China

The World's Factory

Dongguan is sometimes called "the world's factory" due to its prosperous manufacturing industry, and 75% of its 8.34m population are migrant workers. Since the mid-1980s, Dongguan has been China's leading export and manufacturing base, a hothouse for churning out low cost products bearing the ubiquitous "Made in China" label. Today, it's fulfilling the tech industry's orders.

Environmental Impact

With almost 1m registered factories in Dongguan, air pollution can be a serious problem. In 2017, levels of PM2.5, the most harmful fine carcinogenic particulate, increased by 5.3% across the Guangdong region, which incorporates Dongguan. Reports of widespread smog and foul odours in the air are commonplace in the city.

Labor Conditions

Even if purchasing reams of products from China is significantly cheaper than domestic sources, that cost is carried elsewhere: the factory workers.

Factory workers are often crammed into factory spaces, work extremely long hours, and are exposed to incredibly harmful industrial-grade level chemicals.

Outside of the factory, the workers – principally female – are usually housed in dormitories, several to a room.

- Recommended Reading:
 - Disney's Ariel Mermaid Doll
 - The Foxconn Technology Group Suicides Scandal
 - High Tech Misery in China, National Labor Committee (NLC)
 - Dirty Toys, Institute for Global Labour and Human Rights

Thank you.